6.7 Financial Models

Compound Interest Formula

The amount A after t years due to a principal P invested at an annual interest rate r, expressed as a decimal, compounded n times per year is

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

Common values of n:

Compounded	annually	semi- annually	quarterly	monthly	daily
n	1	2	4	12	365
Pearson	Copyright © 2016, 2012 Pearson Education, Inc. All Rights Reserved				Slide - 3

Example – Future Value of Money

Find how much you would have in an account after 5 years if you invest \$500 at 4% compounded quarterly. ← n = 4

$$A = P \left(1 + \frac{r}{n} \right)^{nt}$$

$$A = 500 \left(1 + \frac{04}{4} \right)^{20}$$

$$A = 500 \left(1 + \frac{04}{4} \right)^{20}$$

$$A = 500 \left(1 + \frac{04}{4} \right)^{120}$$

$$A = 4010.10$$

Your Turn

You make a \$1500 furniture purchase with no payments for 12 months. What is your account balance if you make no payments for a year and the store charges 18% interest compounded daily?

$$A = 1500(1+.18/365)^{365(1)}$$

$$A = $1795.75$$

Continuous Compounding -> Continuous Growth Model

The amount A after t years due to a principal P invested at an annual interest rate r compounded continuously is

$$A = Pe^{rt}$$

Example

Using Continuous Compounding

Find the amount that results from investing a principal of \$1000 at an annual rate of 10% compounded continuously for 3 years.

A =
$$Pe^{rt}$$

$$A = |000e^{.10(3)}$$

Example – Present Value of Money

You want to save money for a trip to Europe 5 years from now. The trip will cost you \$5000. How much should you invest now in an account that pays 15.6% compounded monthly to reach your goal in 5 years?

h your goal in 5 years?
$$A = P(1 + \frac{r}{n})^{12}$$

$$5000 = P(1 + .156/12)$$

$$5000 = P(1 + .156/12)^{60}$$

$$(1 + .156/12)^{60}$$

$$(1 + .156/12)^{60}$$

Pearson

Copyright © 2016, 2012 Pearson Education, Inc. All Rights Reserved

Slide - 8

Your Turn

A family wants to start a Florida Prepaid savings plan for college. They have 18 years to save at 13.4% average rate of return annually with a future goal of \$20,000. How much do they have to invest now to reach their goal?

est now to reach their goal?

$$20,000 = P(1+.134/1)$$

 $20,000 = P(1.134)^{18}$
 $\frac{20,000}{(1.134)^{18}} = P$
 $\frac{(1.134)^{18}}{(1.134)^{18}}$
 $P = 2079.67

$$A = \lambda P$$

Rate of Interest Required to Double an Investment

What rate of interest compounded annually is needed in order to double an investment in 10 years?

$$\lambda = (1+r)^{10}$$

Copyright © 2016, 2012 Pearson Education, Inc. All Rights Reserved

7.18% interest rate will double the investment in 10 years

Example

Time Required to Double or Triple an Investment

- (a) How long will it take for an investment to double in value if it earns 5% compounded continuously?
- (b) How long will it take to triple at this rate?

$$A = Pert$$

$$\lambda = \frac{\ln \lambda}{100} = .05t$$

$$\lambda = e^{.05t}$$

$$\lambda = e^{.05t}$$

$$\lambda \approx 13.86 \text{ years}$$

Financial Planning – Who wants to retire as a millionaire?

$$t = 45 \text{ years}$$
 $A = $1,000,000$
 $N = 1$
 $N = 15\%$

$$\frac{1,000,000 = P(1 + .15)^{45}}{\frac{1000,000}{(1.15)^{45}}} = P$$

$$\frac{1000,000}{(1.15)^{45}} = P$$